Example document
Mediate
this document or view
the source.
...
The Euler equations for an inviscid incompressible 2-D fluid flow
are given by
'quot(D .oper ?nu?,D .oper t) = _'grad(p),
x .eltof 'Real^2, t > 0
'diverg(?nu?) = 0, ?nu?(x,0) = ?nu?;0(x)
where ?nu? = 'transp(?nu?;1,?nu;2) is the fluid
velocity, p is the scalar pressure,
'quot(D .oper ?nu?,D .oper t) =
'ptderiv(?nu?,t) + 'oper(?nu? .dot 'Grad, ?nu?),
and ?nu?;0 is an initial incompressible velocity field,
i.e. 'diverg(?nu?;0) = 0.
In this paper, we study the detailed limiting behaviour of
approximate solution sequences for 2-D Euler with vortex sheet
initial data. A sequence of smooth velocity fields
(?nu? .upidx ?epsilon?)(x,t) is an approximate solution
sequence for 2-D Euler provided that the ?nu? is
incompressible, i.e. 'diverg(?nu?) = 0,
and satisfies the following properties:
- The velocity fields ?nu? .upidx ?epsilon? have uniformly
bounded local kinetic energy, i.e.
'max('integ('abs((?nu? .upidx ?epsilon?)(x,t))^2,x,'abs(x) <= R),
0 <= t <= T) <= C
for any R, T > 0.
- The corresponding vorticity,
?omega? .upidx ?epsilon? = 'curl(?nu? .upidx ?epsilon?),
is uniformly bounded in L .upidx 1, i.e.
'max('integ('abs((?omega? .upidx ?epsilon?)(x,t)),x),
0 <= t <= T) <= C
for any T > 0.
- The vortex field ?nu? .upidx ?epsilon? is weakly consistent
with 2-D Euler, i.e. for all smooth test functions,
?phi? .eltof (C .upidx 'inf)('Real^2 .cartprod 'openopen(0,'inf))
with 'diverg(?phi?) = 0,
'lim('integ('integ(?phi?;t .dot ?nu? .upidx ?epsilon? +
'matprod('Grad .oper ?phi?,
?nu? .upidx ?epsilon? .tensorprod ?nu? .upidx ?epsilon?),
x), t), ?epsilon? .approach 0) = 0.
Here ?nu? .tensorprod ?nu? = 'pt(v;i,v;j),
'Grad .oper ?phi? = 'ptderiv(?phi?;i,x;j),
and 'matprod(A,B) denotes the matrix product
'Sum(a;i;j*b;i;j,'tuple(i,j)). We remark in passing...