
Secure Interaction Design
and the Principle of Least Authority

Ka-Ping Yee
Group for User Interface Research
University of California, Berkeley

ping@zesty.ca

ABSTRACT
The security of any computer system that is configured or
operated by human beings critically depends on the
information conveyed by the user interface, the decisions of
the users, and the interpretation of their actions. This
position paper puts forth some starting points for reasoning
about security from a user-centred point of view. I rebut
the common assumption that security and usability are
always in conflict, propose a user model based on the
subjective actor-ability state, and identify ten key principles
for secure interaction design. I argue that adherence to the
Principle of Least Authority is essential to usability goals
for secure systems, and call for increased attention to this
well-known security principle in the security community.

Keywords
Secure interaction design principles, intentional stance,
actor-ability model, Principle of Least Authority.

INTRODUCTION
Researchers and designers of human-computer interaction
face a tremendous challenge in the computer security arena:
the pervasive assumption that any secure system must be a
compromise between the conflicting goals of security and
usability. This belief is so strongly held in some circles
that it is not uncommon for security system designers to
openly adopt an attitude of contempt toward their users. I
find this unfortunate and counterproductive, and feel that it
is vital for the security and usability communities to work
together on these problems. To this end, my colleagues and
I have developed a user model and a set of interaction
design principles for secure systems.

The bulk of computer security research concerns methods
for establishing software correctness – that is, assuring that
software implementations will perform according to a
particular specification in theory. However, I claim that
today’s most widespread and damaging security problems
are failures to adequately meet user expectations, and have
nothing to do with software correctness.

Saltzer and Schroeder’s seminal paper [4] introduced a
basic design principle for secure systems known as the
principle of least privilege or least authority. It states that
each system component should be granted the least
authority necessary to perform its function. It has long
been accepted that this simple principle is fundamental to
security at the system level; it is important to recognize that
it is also fundamental to usability for secure systems.

The remainder of this paper will address four questions:

1. Why is software correctness insufficient for security?

2. How can security and usability work together rather
than against each other?

3. What user models and design principles can we
employ to improve secure interaction design?

4. What is the relationship between the Principle of Least
Authority and usability concerns for secure systems?

INSUFFICIENCY OF SOFTWARE CORRECTNESS
Plenty of work has been done on building and verifying
software to correctly meet security policy specifications.
However, the literature largely neglects the question of how
these specifications come about in the first place. In order
for a computer system to be secure in practice, the security
restrictions must match human expectations of system
behaviour. It is impossible to even define what “security”
means without addressing user expectations.

Here is a high-profile example to support this argument.
E-mail viruses have been among the most spectacular and
damaging security problems in recent history. Yet many of
these, such as the infamous “Melissa” and “Love Letter”
viruses, involve no software errors whatsoever. In fact,
these viruses depend on the correct operation of software in
order to propagate. At no point in their propagation does
any application or system software behaviour differ from
exactly what its programmers would expect. Rather, the
problem exists because the functionally correct behaviour
is inconsistent with the user’s desires and expectations.

ALIGNING USABILITY AND SECURITY
Because of the essential relationship between computer
security and human expectations, it makes more sense for
security and usability to be complementary rather than
conflicting goals. A system that is more secure is more
controllable, more reliable, and hence more usable.
Conversely, a more usable system reduces confusion and is
more likely to be secure. In general, security advocates and
usability advocates both want the computer to correctly do
what the user wants – no more and no less.

Here is a simple example of how this perspective can lead
to better designs than the conventional wisdom. The
“security confirmation” prompt is a common sight in user
interfaces for secure systems. A typical conception of an
interface for opening files in a text editor in a secure
environment might look like this:

Figure 1 . Conventional design for a secure text editor.

The reasoning behind such a design is that reading files is a
privileged operation on a secure system, so it ought to be
confirmed by the user before the editor is granted access.
The consequential observation is that a security
improvement has impeded usability by introducing an
annoying extra step into the user’s workflow.

However, if we step back and examine the situation from
the perspective of user intentions, we can find a much
better solution. Notice that the purpose of the file browser
itself is to designate a file for reading. Therefore, in
making a selection the file browser, the user has already
precisely specified an expected privilege relationship: the
editor should get read access to the selected file. All that is
needed is for the type of access and the receiver of the
access to be clearly identified, and for the file browser to be
a system-controlled interface component that conveys just
the selected access to the text editor:

Figure 2 . Combining designation with authority. The file
browser’s special border marks it as a privileged entity.

The result is a design that is more secure and more clear,
while remaining just as convenient for the user. A security
specification has been combined with user’s natural task
into a single operation, as it should be.

The inconvenience of security confirmation prompts is
often a result of separating a designation operation from an
authority-manipulating operation. Many security problems
can be avoided by combining designation with authority, as
recommended by Norm Hardy’s discussion of the
Confused Deputy problem [3].

DEFINING THE PROBLEM
Here is one way to frame the problem of secure interaction
design: a computer user interacts within a universe of
programs and other users, often unpredictable and
sometimes even adversarial. The user employs a user
agent (such as a desktop shell or Web browser) to mediate
interactions with this universe. How can we design the
user agent to serve and protect the user’s interests?

Notice that the scope of this definition avoids systems
designed to balance the user’s interests against conflicting
interests. I believe that the ability to meet the user’s
interests is a prerequisite for the ability to balance multiple
interests, that the simpler problem has not been solved, and
therefore that we need to solve that simpler problem first.

For example, digital copy restriction mechanisms often
make media content harder to use. This is properly seen as
a conflict between different groups of people, not a conflict
between security and usability. Even in a hypothetical
system that would manage this conflict, the ability for the
user to accurately and conveniently express expectations
and desires remains crucial to secure operation.

REQUIREMENTS FOR SECURE SYSTEMS
We can begin to address the problem by considering a set
of requirements for a user to be able to use a computer
system securely. In the tradition of computer security
discourse, we will suppose that our user is called Alice.
The requirements proposed here fall into two broad classes.

Firstly, if “unsafe” means a state where the computer would
permit access contrary to Alice’s wishes, what is necessary
for Alice to keep her system safe?

i. The system should not become unsafe all by itself.

ii. Alice should be able to determine whether her system
is in a safe state.

iii. Alice should be able to make her system safer.

iv. Alice should not intentionally or inadvertently make
choices that cause her system to become unsafe.

v. Alice should not make choices that depend on abilities
she does not have.

Secondly, what is necessary in order for Alice to be able to
communicate effectively with her computer?

vi. In order to protect things that matter to her, Alice
should be able to identify and distinguish those things.

vii. Alice should be able to express what she wants.

viii. Alice should know what she is telling her system to do.

ix. The system should protect Alice from being fooled,
whether inadvertently or purposefully (by maliciously
written applications).

THE ACTOR-ABILITY MODEL
I have proposed a user model of interaction with secure
systems in terms of actors and abilities.

The suggestion is that, when they interact with computers,
users model both application programs and other users of
multi-user systems as independent actors. In Dennett’s
terminology, they model these things by adopting a design
stance or intentional stance [2]. To adopt a physical stance
is to predict behaviour according to physical laws; to adopt
a design stance is to predict behaviour according to an
understanding of the purpose for which an object was
designed; and to adopt an intentional stance is to predict
behaviour according to an understanding of the beliefs and
intentions of a sentient entity. Here are some rough
examples of how people apply these stances to the real
world and analogously to the computer world (though it is
now becoming common for users to speak about computer
programs as if they were intentional):

 real-world example computer example

physical stance ball text file

design stance toaster application

intentional stance person another user

The actor-ability model suggests that user expectations can
be described in terms of the user’s set of extant actors and
the abilities associated with each of those actors. Note that
although a computer system in reality may involve the
interaction of many hundreds of software components, the
user model is constructed in terms of actors as defined from
the user’s perspective. For instance, a single actor might be
an instance of a running application program, which
aggregates several software components and data files. The
user is also an actor – the primary actor – in the user’s own
model.

Maintaining security is then a question of ensuring that (a)
every other actor’s true abilities are a subset of that actor’s
abilities in the user’s current actor-ability state; and (b) the
user’s own abilities are a superset of the abilities in the
user’s current actor-ability state. The first condition
ensures that other actors will not be able to take unexpected
actions; the second condition ensures that the user will not
expect to have abilities and find them missing.

DESIGN PRINCIPLES
The requirements stated above translate into a set of ten
design principles for interaction design in secure systems,
which I presented in a recent paper [5]. I list them here, but
there is not enough space to go into each one in detail.
Noted after each principle is the requirement it addresses.

1. Path of Least Resistance. The most natural way to do
any task should also be the most secure way. (iv)

2. Appropriate Boundaries. The interface should expose,
and the system should enforce, distinctions between
objects and between actions along boundaries that
matter to the user. (vi)

3. Explicit Authorization. A user’s authorities must only
be provided to other actors as a result of an explicit
user action that is understood to imply granting. (i)

4. Visibility. The interface should allow the user to easily
review any active actors and authority relationships
that would affect security-relevant decisions. (ii)

5. Revocability. The interface should allow the user to
easily revoke authorities that the user has granted,
wherever revocation is possible. (iii)

6. Expected Ability. The interface must not give the user
the impression that it is possible to do something that
cannot actually be done. (v)

7. Trusted Path. The interface must provide an
unspoofable and faithful communication channel
between the user and any entity trusted to manipulate
authorities on the user’s behalf. (ix)

8. Identifiability. The interface should enforce that
distinct objects and distinct actions have unspoofably
identifiable and distinguishable representations. (ix)

9. Expressiveness. The interface should provide enough
expressive power (a) to describe a safe security policy
without undue difficulty; and (b) to allow users to ex-
press security policies in terms that fit their goals. (vii)

10. Clarity. The effect of any security-relevant action
must be clearly apparent to the user before the action is
taken. (viii)

These principles were developed through extensive
discussions with designers and users of software intended
to be secure. The set you see here is the most recent of
several iterations of refinement during which the number of
principles has varied from seven to eleven.

As recommendations, these principles might all appear to
be quite obvious. In my opinion, this is no great deficiency.
To my knowledge, the appearance of [5] at an international
security conference is the first time that a comprehensive
set of interaction design recommendations has been
gathered, formulated, and presented to a security audience,
and I consider that somewhat of a breakthrough. I hope at
least that this has helped to open discussion on these
matters. I am sure the principles will need further revision
as we learn more over time.

Despite their apparent obviousness, I know of no deployed
system that comes close to satisfying these principles.
Attempting to satisfy them all appears to be a significant
design challenge. However, I believe this challenge is not
completely unrealistic: there is important ongoing research
on a prototype desktop interface called CapDesk [1] that
aims to meet most of the principles.

THE PRINCIPLE OF LEAST AUTHORITY
The importance of the Principle of Least Authority to the
construction of secure systems cannot be overemphasized.
From a systems point of view, transferring too much
authority is dangerous because we are then forced to rely
on the software to exercise authority only in the desired

ways, and rigourously predicting the behaviour of software
is extremely hard. It is better to execute software in an
environment where authority is minimized to begin with.

From a usability point of view, there are even more reasons
why authority should be minimized. Transferring too much
authority forces the user to rely on the software to perform
as advertised. Since in most cases the user has no access to
the source code or the expertise to verify it, the user is
forced to trust not only the good intentions but also the
competence of the software author. Forcing this kind of
trust is unacceptable for at least four reasons: (a) users are
unlikely to have the resources to legally pursue the authors
of harmful software; (b) regardless of what legal recourse a
user may have, it can only take place after the damage has
already occurred; (c) users are unlikely to have any way to
identify which software is at fault; and (d) damage can be
caused just as easily by a bug as by a malicious program.

Moreover, when too much authority is transferred at once,
it becomes difficult for the user to ascertain what can go
wrong or whether a particular action will be safe. The
safety of the system comes to depend on a large amount of
invisible state, which rapidly exceeds the user’s short-term
memory.

Unfortunately, popular operating systems have a great
tendency to transfer enormous bundles of authority en
masse. In fact, both Windows and Unix blatantly ignore
the Principle of Least Authority every time they start any
program, by implicitly transferring every authority the user
possesses to the newly running process. This absolutely
has to stop if we are to make any progress in creating
secure, usable systems.

Microsoft’s ActiveX certification mechanism is a specific
example of the wrong approach to security. Rather than
confining downloaded software so that it has limited
authority to damage the system, it assumes that users will
be able to establish trust relationships with software
sources. It also assumes that all software will always
perform exactly as its author intended, which as we all
know is utterly absurd. The user only gets an all-or-
nothing choice: either the user trusts the software with

universal authority, or the software will not run at all.
Given this option, most users choose to run the software,
which leaves them no better off than if they had no security
to begin with. The only difference is that Microsoft can
now disclaim responsibility for any problem.

Compared to this, Java’s security model is a move in the
right direction, though its design is not yet able to support
true software confinement as defined in the security
community. However, the E language [1] is primarily
designed on the Principle of Least Authority, and provides
a very promising avenue for research into effective, secure,
usable systems.

CONCLUSION
I have presented a user model and a set of design principles
that I believe will be an interesting starting point for
discussion. I hope we can continue to seek ways that
security and usability goals can be harmonized in the
design of secure systems.

Developing truly secure systems for real-world use requires
a fundamental change in the way computer security experts
and practitioners think about security. Although the
Principle of Least Authority is well known and widely
cited, most systems do not even try to enforce this basic
requirement in practice. Given the increasing level of
control handed over to computers in every aspect of today’s
society, I believe this to be one of the most important things
we have to change in order to achieve the goal of a safer
world.

REFERENCES
1. Combex. E and CapDesk: POLA for the Distributed Desktop

(see http://www.combex.com/tech/edesk.html).

2. D. Dennett. The Intentional Stance. MIT Press (1987).

3. N. Hardy. The Confused Deputy. In Operating Systems
Review, 22(4)36–38.

4. J. H. Saltzer, M. D. Schroeder. The Protection of Information
in Computer Systems. In Proc. IEEE, 63(9)1278–1308 (see
http://web.mit.edu/Saltzer/www/publications/protection/).

5. K.-P. Yee. User Interaction Design for Secure Systems. In
Proceedings of the 4th International Conference on
Information and Communications Security, Singapore, 2002.

